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Abstract. Inspired by the outstanding performance of sparse coding in
applications of image denoising, restoration, classification, etc, we pro-
pose an adaptive sparse coding method for painting style analysis that
is traditionally carried out by art connoisseurs and experts. Significantly
improved over previous sparse coding methods, which heavily rely on the
comparison of query paintings, our method is able to determine the au-
thenticity of a single query painting based on estimated decision bound-
ary. Firstly, discriminative patches containing the most representative
characteristics of the given authentic samples are extracted via exploit-
ing the statistical information of their representation on the DCT basis.
Subsequently, the strategy of adaptive sparsity constraint which assigns
higher sparsity weight to the patch with higher discriminative level is
enforced to make the dictionary trained on such patches more exclu-
sively adaptive to the authentic samples than via previous sparse coding
algorithms. Relying on the learnt dictionary, the query painting can be
authenticated if both better denoising performance and higher sparse
representation are obtained, otherwise it should be denied. Extensive
experiments on impressionist style paintings demonstrate efficiency and
effectiveness of our method.

1 Introduction

Painting analysis has been carried out by art connoisseurs and experts tradition-
ally, and the procedure could be fairly costly and subjective. Even worse, the
conclusions made in this way could be changed over time due to the emergence
of new historical evidence. Therefore, assisting the authentication by less biased
automatic method has been attracting increased attention from the communities
of art, mathematics and engineering, etc. Although appealing, and much cross-
disciplinary interaction of image analysis researcher and art historians has been
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reported, a survey of the representative literature [1, 9, 11, 14, 20, 19, 21] reveals
that the research of painting authentication using computer vision techniques is
still in its early stage.

Currently, most published research of computerized painting analysis focuses
on two tasks: to distinguish authentic painting from its forgery, given a set
of authentic samples; to classify the query authentic one for dating challenge
or stylometry comparison, given multiple sets of authentic samples. Intuitively,
such identification and classification like tasks can be easily solved by exploit-
ing the latest achievements in pattern classification. However, due on one hand
to the requirement of sophisticated high-level art knowledge which should be
conveyed and applied mathematically, on the other hand to the lack of suffi-
cient well-prepared positive and negative samples1, a classifier with satisfactory
performance still demands extensive efforts.

Inspired by the outstanding performance of sparse coding which has achieved
the state-of-the-art performace in a variety of applications including image de-
noising and restoration, action classification and recoginition, face recognition
and abnormal (or irregularity) detection, etc, it has been applied for painting
analysis as well in recent years [9, 16, 15]. In the widely celebrated paper pub-
lished on Nature [18], sparse coding is demonstrated with the capability of cap-
turing well the localized orientation and spatial frequency information existed in
the training images. Nevertheless, when applied to artistic analysis, sparse coding
exploits very little artistic knowledge, perhaps due to the difficulty of incorporat-
ing the stylistic information into the standard training procedure. Moreover, such
methods make the final decision based on the comparison of pertinent statistic,
either among multiple query samples or among multiple sets of given authentic
samples, for the authentication and dating challenge tasks respectively. However,
it is not always the case to distinguish the authentic one from its imitations, and
the more realistic problems is to determine authenticity for one query sample
given a set of authentic samples. Consequently, several questions of practical im-
portance could be raised: firstly, is it possible to import any artistic knowledge
appropriately into the sparse coding model to capture more characteristics of
the painting? Secondly, how to estimate a decision boundary to determine how
much a query painting can deviate from the training data before it could be
categoried as being too different to be authentic or consistent?

In this paper, we propose an adaptive sparse representation algorithm in
which the DCT baseline is leveraged to overcome the aforementioned drawbacks
of most available methods in some extent. Firstly, instead of brushstrokes or fea-
tures, discriminative patches containing the most representative characteristics
of the given authentic samples are extracted via exploiting the statistical infor-
mation of their representation on the DCT basis. Moreover, such patches are
sorted according to their distinctiveness. Subsequently, the strategy of adaptive

1 Due on one hand to the copyright issue, the high quality reproductions of the paint-
ings in the museums are rarely publicly available even for research purpose, on the
other hand to the fact that musemums usually have no interests to acquire and keep
paintings that are known as forgeries.
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sparsity constraint which assigns higher sparsity regularization weight to the
patch with higher discriminative level is enforced to make the dictionary trained
on such patches more exclusively adaptive to the authentic samples than dic-
tionary trained via previous sparse coding algorithms. Relying on the learnt
dictionary, the query painting can be authenticated if both better denoising per-
formance and more sparse representation are obtained than the results obtained
on the baseline DCT basis, otherwise it should be denied. Herein the DCT basis
is chosen to represent the general style to some extent, which is used to set a
baseline for comparison purpose. In this way, a decision boundary can be built.
Besides the sparsity measure, here we further exploit a well proved conclusion in
sparse coding community that the dictionaries learned from the data itself sig-
nificantly outperform predefined dictionaries, such as DCT, curvelets, wedgelets
and various sorts of wavelets in the generative tasks including denoising, restora-
tion, etc, since the learnt dictioanry is more suitably adapted to the given data [8,
5]. We apply such conclusion from another direction, namely, if the testing image
can be better denoised by using the learnt dictioanry than DCT, it can be deter-
mined as more consistent with the dictionary (basis) learned from the authentic
samples. Extensive experiments including classification of van Gogh’s paintings
from different periods, dating challenge and stylometry measure demonstrate the
efficiency and effectiveness of our method. In particular, to our knowledge, the
experiment of painting classification based on decision boundary is conducted in
a computerized artisitc analysis fashion for the first time.

The main contributions of our work may be summarized as follows. Firstly, a
novel patch extraction method is developed based on the statistics on the DCT
basis. Secondly, an improved sparse coding algorithm is proposed for stylistic as-
sessment of the paintings, incorporating the prior statistics of extracted patches
Thirdly, a decision boundary is estimated based on a baseline measure leveraging
the DCT basis, enabling the attribution of a single query painting. Last but not
the least, insightful observations are drawn for the analysis of the paintings by
van Gogh produced in different periods.

2 Related Work

Research efforts based on computational techniques to study art and cultural
heritages have emerged in the recent years, interested readers can refer to such
surveys [20, 19, 21] for a comprehensive introduction. Here, we focus on the most
relevant works. Currently, according to the characteristics extracted from digital
paintings and on which the following process performs, the main approaches
of computerized painting analysis can be roughly divided into three categories:
feature based, brushstroke based and sparse coding based.

In order to perform the high-level analysis on paintings, various methods have
been proposed to capture their perceivable characteristics based on the features
of color and texture [23], fractal dimension [22], etc. Without attempting to be
exhaustive, other features include HOG2×2, local binary pattern (LBP), dense
SIFT (scale-invariant feature transform) have also been tested [4]. However,
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such feature based methods can hardly be generalized to deal with paintings
of different artists, since they reply heavily on the prior knowledge of different
artists to select proper features to represent their artworks, and the challenge of
this regard has been pointed out in [11].

As suggested by art connoisseurs and experts that the pattern of brushwork
is an important indicator of styles, methods have been developed tailored to the
brushstroke analysis. The work [14] published on PAMI applied the brushwork
traits to authenticate and date the paintings of van Gogh. However, brushstrokes
are too difficult to be crisply segmented out using off-the-shelf detector. Several
brushstroke extraction methods have been proposed [2, 14], but codes of such
methods are not publicly available. Based on brushstroke detection, a variety of
mathematic tools, such as neural network [17], hidden Markov Models (HMM)
[10], multiresolution HMM [13], have been applied to represent and model the
information of brushstroke width, length, curvature, shapes, etc. Subsequently,
SVM classifier is trained on the given data to perform a specific task. In sum-
mary, researchers in this study identified several challenges deserving more ef-
forts. Firstly, it is very difficult to automatically extract the strokes and art
theory required to be exploited. Secondly, there is an urgent demand for more
sophisticated mathematical models which are capable of capturing the subtle
visual characteristics in paintings. Thirdly, it is difficult to train a satifactory
classifier without sufficient well-prepared positive and negative samples.

Motivated by its outstanding performance in various applications in com-
puter vision and signal processing, sparse coding has been applied to the recog-
nition of authentic paintings as well. In 2010, the work [9] applied the sparse
coding model for the first time on quantification of artistic style to determine
authentication of drawings of Pieter Bruegel the Elder and received a lot of
attention in the media. Therein, the dictionary is firstly learned based on the
given authentic paintings according to the sparse coding model, and the authen-
tication is performed on the sparsity measure of representations on the learnt
dictionary. The one whose representation coefficients are more sparse will be
determined as authentic. In [15], sparse coding is applied to perform stylometry
measure on van Gogh’s paintings of different periods. Instead of measuring the
sparsity of the representation coefficient, the similarity measure is performed
on the dictionary itself. The strength of the sparse coding algorithm is that it
can capture the visual features in the painting through the overlapping patches
extracted. However, the standard dictionary training adopted previously does
not integrate the discriminative features that are indicative of styles, such as
brushstrokes, possibly because the extraction of brushstrokes and the modeling
involves extensive domain knowledge.

3 Our Adaptive Sparse Coding Algorithm

3.1 Notation

To facilitate the description, we first introduce the notation adopted in this pa-
per. Matrices and vectors are in bold capital, bold lower-cased fronts respectively.
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We define for q ≥ 1, the `q-norm of a vector x in Rm as ||x||q , (
∑m

i=1 |x[i]|q)
1/q

,
where x[i] denotes the i-th entry of x. The `0-pseudo-norm is defined as the num-
ber of nonzero elements in a vector. We consider the Frobenius norm of a matrix

X in Rm×n: ||X||F , (
∑m

i=1

∑n
j=1 |X[i, j]|2)

1/2
. xi or X(:, i) represents the i-th

column of X, X(j, :) is the j-th row of X.

3.2 Previous Sparse Coding Algorithm for Painting Analysis

Mathematically, the basic sparse coding algorithm amounts to solve the following
optimization problem (as Eq.(1)) or its tightest convex surrogate (as Eq.(2)):

min
D,X

||Y −DX||2 s.t. ∀ 1 6 i 6 N, ||xi||0 6 k (1)

min
D,X

||Y −DX||2 + λ||X||1 (2)

where Y ∈ Rd×N contains all the available image patches {y}Ni=1 as columns,

and similarly, X ∈ Rn×N contains all the sparse representation vectors {x}Ni=1.
Sparse representation aims to find both the dictionary D ∈ Rd×n and the rep-
resentations X. In Eq.(1), k is a given constant controlling the sparsity, usually
k � d to keep X sparse and d < n to ensure the over-completeness of D.
In Eq.(2), λ is the regularization parameter to balance the `2 representation
fidelity term and the `1 sparsity penalty term. In fact, extensive efforts have
been devoted to the algorithms to find the global optimal solution of D and
X efficiently, and lots of methods have been proposed. For more knowledge in
this regard, readers are advised to refer to such monograph [7] and references
therein.

The typical framework of using sparse coding for artistic authentication can
be summarized briefly as this: Dtr is firstly trained on the given authentic paint-
ings, then the representation matrices of two testing samples, the authentic one
and a forgery, are computed based on Dtr. As [9, 16] did, kurtosis is applied
to measure the sparseness of matrix. The one whose representation matrix is
more sparse, namely the kurtosis value is larger, is determined as authentic.
Obviously, such methods rely on the comparison of kurtosis of multiple query
paintings without taking their difference of content complexity into account. The
limitation of [9] will be demonstrated in the experiment part, Section 4.1.

3.3 Discriminative Patches Extraction

To facilitate more perceivable characteristics of the authentic paintings being
learned by sparse coding model, here we propose to extract discriminative patches
according to the statistics of their representation on the DCT basis.

Given a painting, we firstly estimate its representation coefficient matrix on
the predefined DCT basis by replacing D in Eq.(2) with Ddct, as below:

min
Xdct

||Y −DdctXdct||2 + λ||Xdct||1 (3)
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where the image patches {y}Ni=1 are of size 12×12 pixels, extracted from the
whole image with half size sliding; the number of DCT atoms is 512, namely
Ddct is of dimensions 144×512; and the recommended value of λ is 0.6. As Ddct

is predefined and known, we apply the `1-ls algorithm [12] to estimate Xdct.
Here, we clarify that the default patch size is 12×12 pixels extracted with half
size sliding, the default atom number of dictionary, either predefined DCT or
learned on training data, is 512. Such default parameters are used in this paper,
except where indicated.

As well known that the DCT basis is usually used for image compression,
an image patch with more complex content requires more DCT basis functions
to represent, and vice versa. To measure the content complexity of an image
patch of size n×n pixels, the activity measure is proposed in [7], a higher value
indicating the presence of more complex content, as below:

Activity (I) =

n∑
i=2

n∑
j=1

|I [i, j]− I [i− 1, j]|+
n∑

i=1

n∑
j=2

|I [i, j]− I [i, j − 1]| (4)

It is worth mentioning that the outline in the painting is mainly decided by
the object itself, and includes little characteristics of the artist. Therefore we
eliminate such pixels first based on the segmentation results of K-means seg-
mentation. In our work, the DCT basis (or say dictionary) which is popularly
applied as initialization for dictioanry learning in sparse coding is applied as a
baseline to represent a general painting style. Therefore, patches which do not
conform to such criteria are defined as discriminative, which contain represen-
tative characteristics of specific artist. Mathematically, discriminative patches
are those patches with lower kurtosis (namely, more atoms used for representa-
tion) and relatively lower activity (namely, content is simpler). Instead of using
the values directly, we perform discriminative patches extraction based on the
sorting of values of both kurtosis and activity, as summarized in Algorithm 1.

In Fig.1, the result of discriminative patches extraction is shown. Moreover,
the intermediate result of outline detection of K-means segmentation is also in-
cluded. Through careful observation, we find that such extracted patches cover
most of the area with obvious brushstrokes, especailly, areas with impasto are
extracted sucessfully, which are supposed to be the most representative charac-
teristics of the artist [25]. In contrast to those brushstroke detection methods
which are limited for oil painting, our discriminative patch extraction method is
more general, and can be easily applied on other kinds of artworks. In fact, we
have tried other bases including wavelet and coutourlet for this part, and find
that the DCT bais works well to meets our requirement.

3.4 Adaptive Sparse Coding Algorithm

With discriminative patches P d
i (i = 1, . . . ,K) in hand, whose discriminative

level (represented as dli) is the descending order, we propose the following adap-
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Algorithm 1 Discriminative Patches Extraction.

Input: A painting image IM ;
Output: Discriminative patches: P di , i = 1, . . . ,K;
1: Get patches of szie 12×12 pixels from IM with half-size sliding: Pi, i = 1, . . . , N ;
2: Get the boundary map IMe by performing the K-means segmentation on IM ;
3: Based on IMe, obtain patches without boundary pixels: Pi, i = 1, . . . ,M ;
4: Set K = M × 0.2; //20% of the patches will be extracted.
5: Using Eq.(3), compute coefficient vector xi for patch Pi, i = 1, . . . ,M , compute

the kurtosis for each coefficient vector and sort in ascending order, get kurArray;
6: Compute activities for the patches Pi, i = 1, . . . ,M , and sort the values in ascend-

ing order, get actArray;
7: Set nCounter = 0; //to count how many discriminative patches have been found.
8: for j=1; j <= 20; j++
9: for k=1; k <= j; k++

10: if nCounter < K
11: Find patches whose kurtosis value is the begining j × 5% in the kurArray;
12: Find patches whose activity value is the begining k × 5% in the actArray;
13: Find intersection of patches found in step 11, 12, save to the discriminative

patches, P di , i = 1, . . . , p;
14: nCounter = nCounter + p;
15: end for
16: end for
17: In the discriminative patches list, the first K patches are exported.

tive sparse coding model, as below:

min
D,X

||Y −DX||1 +

K∑
i=1

λi ||xi||1 , λi = λmin +
dli − dlmin

dlmax − dlmin
(λmax − λmin)

(5)

where the adaptive regularization parameter λi, instead of a constant, is applied
to balance the representation fidelity term and the sparsity penalty term, and
λmax = 2.5, λmin = 0.5. Obviously, patch with higher dl value will be assigned
with larger λ value. In other words, if the patch with more discriminative infor-
mation is enforced to be represented with less dictionary atoms. Crafted in this

Fig. 1. Result of discriminative patches
extraction. Left: edge detected by K-means.
Right: extracted discriminative patches.

Fig. 2. Authentication on query
samples from van Gogh (left) and
Monet (right).
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way, the dictionary can better represent the stylistic features. Compared with
Eq.(2), another significant difference is that the `1-norm based representation
fidelity is applied, since it is less vulnerable to outliers, as proved in [24, 6]. In
this way, our learnt dictionary is robust to the outliers generated from the flaws
of previous operations.

To tackle the optimization problem of Eq.(5), we separate it into two sub-
problems, sparse coding for training samples and dictionary updating. Briefly,
the objective function of each sub-problem is defined as below:

min
xi

K∑
i=1

||yi −Dxi||1 + λi ||xi||1 , i = 1, . . . ,K (6)

Eq.(6) is to estimate the sparse coefficients of each training patch, when D is
given. We can rewrite Eq.(6) into an equivalent `1 approximation problem:

min
xi

K∑
i=1

∣∣∣∣∣∣∣∣(yi

0

)
−
(

D
λiI

)
xi

∣∣∣∣∣∣∣∣
1

, i = 1, . . . ,K (7)

With X fixed, the dictionary D can be updated as follows:

min
D
||Y −DX||1 (8)

All the sub-problems in Eq.(7) and (8) are standard `1-regression problems. We
resort to the iterative reweighted least squares (IRLS) [3] for solutions, and the
algorithm is summarized as below:

In Algorithm 2, δ is a small positive value (δ = 0.001 in our experiments).
Each iteration of IRLS involves minimizing a quadratic objective function. The
global optimum can be reached by taking derivatives and setting them to zeros.

An intuitive yet important question on adaptive sparse coding model is that
why not apply much larger λ value to make the dictionary more adative to the
patches. However, this is not the case. If λ is out of certain range, although the
solution of D,X still can be obtained, but results in a poor representation fidelity
measure. This observation again justifies that besides kurtosis, the representation
fidelity measure must be taken into account to evaluate how well a dictionary
is learned, or how well the signal is consistent with the dictionary. Here, we
further exploit a well proved conclusion in sparse coding that the dictionary
learned from the data itself is more adapted to the data, resulting in significantly
better denoising performance than applying predefined dictionaries [8], therefore,
the denoising performance, namely the PSNR (peak signal-noise ratio) value
is also incorporated to indicate the reconstructive power of the dictionary. In
summary, on the same testing sample, if the learnt dictioanry can achieve higer
PSNR and higher kurtosis than that of applying DCT, the testing is deemed
as much consistent with the dictonary. Here, the importance of estimating a
reasonable range for the dynamic λmust be highlighted. The value of λmax = 2.5,
λmin = 0.5 applied in our work is based on extensive experiments.
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Algorithm 2 Adaptive Sparse Coding Algorithm.

Input:
Image patches matrix Y ∈ Rd×K , λmax, λmin, and the atom numbers of D is n;

Output:
Solution D ∈ Rd×n,X ∈ Rn×K of Eq.(5);

1: Initialization: set D as overcomplete DCT dictionary;
2: while not converged do
3: //Lines 4 is the sparse coding stage to solve Eq. 7.
4: apply the IRLS method to solve X :

the key objective function for IRLS is:
minxi

∑
j=1 ω

j
i (yi[j]−D(j, :)xi)

2 +
∑n
j=1 η

j(λixi[j])
2;

ωji = 1√
(yi[j]−D(j,:)xi)

2+δ
, ηj = 1√

(0−I(j,:)xi)
2+δ

5: //Lines 6 is the dictionary update stage to solve Eq. 8.
6: apply the IRLS method to update D:

minD(i,:)

∣∣∣∣∣∣(Y (i, :))T − (D(i, :)X)T
∣∣∣∣∣∣

1
, i = 1, . . . , d ;

the key objective function for IRLS is:
minD(i,:)

∑N
j=1 φ

j
i (Y [i, j]−D(i, :)xj)

2;

φji = 1√
(Y [i,j]−D(i,:)xj)

2+δ

normalize each column of D after all rows are updated;
7: end while
8: Output D,X.

4 Experiments And Analysis

4.1 Authentication Experiment

The direct comparison strategy of [9] is questionable, since the decision relying
on the single statistic of sparse representation could be unfair (or biased). The
bias arises because the difference between query samples in terms of the content
complexity has not been taken into account.

To demonstrate the effect of content complexity, let us take an authentica-
tion example shown in Fig.2, in which the given set of authentic paintings are
from van Gogh, and the objective is to determine the authenticity of two query
paintings, from van Gogh and Monet respectively. A dictionary is trained from
van Gogh’s painting, and then the kurtosis values of the sparse coefficients of
the two query paintings associated with the van Gogh dictionary are computed.
As a result, the kurtosis of van Gogh’s painting is 43.00, whereas that of the
Monet’s painting is 61.24. This clearly contradicts the assumption drawn in [9]
that the painting from the same style has a higher kurtosis.

Previous method fails in this case where the content of the authentic van
Gogh’s painting is more complex than Monet’s, thus resulting in dense coeffi-
cients, which will lead to the wrong conclusion that Monet’s painting is authentic
to a van Gogh’s dictionary.

In our method, we estimate the decision boundary of a single query sample
via leveraging the DCT basis as baseline, where the margin is obtained by the
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original kurtosis subtracting off that associated with the DCT basis. The mo-
tivation behind the introduction of a baseline is because the DCT basis, being
unbiased and often used for dictionary initialization, can represent the general
style. It then follows that a decision boundary can be estimated by comparing
the sparse representation of a test painting to this baseline. Instead of using
the original kurtosis values, the margin is perceived as a more suitable mea-
sure. Consequently, for the same paintings used previously, the margin for van
Gogh’s painting is 29.56, while that for Monet’s is 29.72. The effect of content
complexity is thus mitigated to certain extent.

Besides kurtosis, which shows the representativeness of the dictionary, the
denoising performance is another important measure indicative of the reconstruc-
tive power of the dictionary. Here the denoising performance is also compared
against the DCT basis. Using the dictionary trained from the same space, the
PSNR margin for van Gogh’s painting is 1.46 dB compared with -1.72 dB for
Monet’s. The positive PSNR margin for van Gogh’s painting demonstrates that
the dictionary trained from the same image space is indeed better than DCT
basis in terms of the reconstruction ability. On the contrary, DCT basis denoises
Monet’s painting better than the dictionary trained from van Gogh.

In summary, the lack of a decision boundary in the previous methods can be
addressed by introducing DCT basis as a baseline, and then the sparse repre-
sentation and denoising performance can be compared against it. Sparser repre-
sentation and better denoising performance indicate that the query painting is
authentic, belonging to the same image space with the dictionary.

4.2 Style Diversity Experiment

To analyze the style diversity in the context of decision boundary, we follow the
experimental settings in [15]. The objective of this experiment is to determine
the similarity of van Gogh’s paintings in different periods.

As mentioned before, the collection of data set for painting analysis is quite
challenging, since the high quality reproductions owned by the museums are
rarely publicly available. Hence we employ an alternative way to acquire the
large amount of paintings needed for the experiments, by using a python script to
collect paintings from the web, following the same strategy of [4]. The paintings
collected are mainly from WIKIART, which provides artworks in public domain.

The given training set comprises of paintings by van Gogh produced in four
periods, namely Paris Period, Arles Period, Saint-Remy Period and Auvers-sur-
Oise Period. 20 paintings are chosen from each period, thus totally 80. Among
these paintings, 5 in each period are randomly selected to form a group of 20
paintings to represent the overall style of van Gogh, which is used for training
the dictionary. 20 paintings by Monet are also included as a group of outliers.

The sparsity and denoising performance are plotted in Fig.3. The horizontal
axis shows the PSNR margin between the van Gogh dictionary and DCT basis,
whereas the vertical axis reveals the kurtosis margin. These values are normalized
such that their magnitudes are smaller than 1. The hollow markers represent the
original data and the filled markers indicate the position of the mean values.
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Fig. 3. Style similarity for van Goghs painting from four periods and Monets painting.
Hollow marker is for each painting, filled marker is for the mean values of each group.

The plot demonstrates that as outliers, most of Monet’s paintings lie in the
third quadrant and have negative kurtosis and PSNR margin on average, sug-
gesting that they are from a different image space. For the majority of van Gogh’s
paintings located in the first quadrant, those from Paris Period have a higher
mean kurtosis, which indicates that this period is more similar to overall van
Gogh style than other three periods, meaning that van Gogh’s paintings can be
represented better by the Paris Period. These observations are consistent with
the conclusion drawn in [15].

In addition to the similarity analysis in [15], we also measure the spread of
the paintings in each period. This is achieved by computing the variation of the
kurtosis margin and PSNR margin, which are set to be the minor and major
axis of the ellipses centered at the mean. It could be observed that the Paris
Period has the longest major axis, revealing that the stylistic variation of this
period is the greatest among the four periods. This observation agrees with the
fact that the painter constantly varies his style and technique during his stay in
Paris.

To summarize, the Paris Period is the most similar one to van Gogh’s overall
style. The consistency of our finding with the previous paper demonstrates the
efficiency of our method. Furthermore, our algorithm finds that his painting tech-
niques vary most frequently during Paris Period as well, which shed some new
lights on style diversity analysis. The experiment also shows that the DCT basis
is capable of providing a decision boundary for authentication, and successfully
identifying the outliers.
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4.3 Classification of van Gogh’s Painting from Four Periods

To illustrate the usefulness and accuracy of the painting authentication based
on a decision boundary, a novel experiment is designed to classify van Gogh’s
paintings produced in the four periods. The dataset is the same with the exper-
iment in Section 4.2, except that only 10 paintings are chosen from each period
to reduce computational time. The details of these paintings are listed in the
supplementary material.

The experimental procedure is as follows. Firstly, a dictionary is trained
from the 10 paintings randomly selected from each of the four periods. Secondly,
the kurtosis margin and the PSNR margin of each painting associated with
the four dictionaries are computed and then plotted respectively. Under the
scenario where all the paintings are painted by the same painter, the ‘authentic’
paintings are defined as those produced in the same period with the dictionary.
For instance, the paintings in the Arles Period are ‘authentic’ to the dictionary
of this period, and the paintings in other three periods are regarded as ‘forgeries’.
Having a sparser representation and better denoising performance by the trained
dictionary in a specific period than the DCT, the paintings located in the first
quadrant are deemed to be from the same image space of that dictionary and are
authentic. Therefore, the first quadrant is the decision boundary to determine
authenticity for each query painting.

Fig. 4. Classification plots of the four periods. Filled markers: paintings in the same
period with the dictionary used for testing. Hollow markers: paintings in other periods.

The classification results are plotted in Fig.4. The results demonstrate that
our method classifies the paintings with acceptable accuracy. For instance, most
of the paintings in the Arles Period, Saint-Remy Period and Auvers-sur-Oise
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Period are correctly identified. This has corroborated the usefulness of the de-
cision boundary since most of the authentic paintings indeed lie in the first
quadrant. Nevertheless, there are some paintings from other periods misclassi-
fied as authentic. This may be explained by the high similarity of these paintings
observed from the similarity experiment. After all they are all painted by the
same artist.

As for Paris Period, only 5 authentic paintings are correctly identified. How-
ever, the low accuracy does not necessarily undermine the effectiveness of the
decision boundary. From the experiment in Section 4.2, it is observed that the
paintings in the Paris Period vary most significantly in styles. Hence it is not
surprising to find that the dictionary trained from these paintings cannot repre-
sent each painting well. From this perspective, this result is consistent with our
findings in the previous experiment.

To sum up, the decision boundary built upon kurtosis and PSNR margin is
able to classify paintings with high accuracy even in the extremely challenging
case where both the positive and negative samples are paintings of van Gogh.
Furthermore, the classification accuracy can be increased by selecting the paint-
ings with high stylistic consistency.

4.4 Dating Challenge

While the paintings used in the experiment in Section 4.3 can be easily dated
by the connoisseurs as to which period they belong, the attribution for other
paintings by van Gogh are more ambiguous. To address the real dating problems
raised by experts, which has also been explored extensively in [14, 1], we examine
three paintings which seem to share the traits of varied periods.

The paintings under examination are Still Life: Potatoes in a Yellow Dish
(f386), Willows at Sunset (f572), and Crab on its Back (f605), as shown in
Fig.5. The decisions for these paintings are still under debate among connoisseurs
because some insist that they belong to Paris Period while others argue that they
belong to Provence Period, corresponding to the Arles and Saint-Remy Period
in the similarity and period classification experiments.

For the ground truth, two groups of artworks, each containing eight paintings
produced in Paris Period and Provence Period respectively, are selected and we
train two dictionaries from each group. Then the kurtosis margin and PSNR
margin associated with the dictionaries are plotted. From Fig.5, it is clear that
f386 should be dated to the Provence Period since it is located in the first
quadrant when using the Provence dictionary. Similarly, f572 is dated to the
Paris Period. One may wonder how to date f605 since both locations are in the
second quadrant. In fact, this painting can be dated to the Provence Period
because both kurtosis and PSNR margin are higher for the Provence dictionary.
Moreover, in the previous works it is highlighted that compared with f386, f605
is less similar to the paintings in the Provence Period. This is also reflected in
our results since the PSNR margin for f605 is negative when using the Provence
dictionary, meaning that the reconstructive power of the Provence dictionary
is less significant for f605 in comparison to f386. In short, the effectiveness of
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Fig. 5. Dating results (left) of three test paintings (right).

the painting classification based on decision boundary can also be demonstrated
when applied to address the dating question. Which period a painting belongs
to not only depends on the quadrant but also relates to the comparison of the
margins. Although the correct attribution of the three paintings investigated
is controversial in the art historical literature, the conclusion reached in our
experiment is consistent with the examinations conducted by other state-of-the-
art computerized painting analysis methods. Hence it may be concluded that
the performance of our method is also superior.

5 Conclusion

In this paper we have developed a groundbreaking method for painting style
analysis. Leveraging the proposed DCT baseline, both the discriminative patches
extraction in the early stage and the decision making in the final stage are per-
formed efficiently and successfully. In between, an adaptive sparse coding algo-
rithm is proposed to learn the perceivable characteristics of the artist, provided
a set of authentic data is given. A promising aspect of our method is that the
authenticity of a single query painting can be determined based on a decision
boundary. With this procedure we have performed extensive authentication and
classification experiments where consistent conclusions are drawn. We have also
shown that our novel approach of authentication based on a decision boundary
sheds some new lights on style diversity analysis. Furthermore, our method can
classify paintings with high stylistic similarity fairly accurately. We believe that
with the advances in vision and machine learning, more art related questions
can be addressed from a computational point of view.
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